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ABSTRACT

The thermal decomposition and the glass transition tempera-

ture of poly p-methoxystyrene (PpOMeS) were studied with a
(DSC-2) differential scanning calorimeter. The undecomposed
and decomposed polymers were analyzed by gel permeation
chromatography for molecular weight distributions and by

DSC-2 for changes in the polymer glass transition tempera-
tures. Decomposition of PpOMeS under isothermal conditions
during 50 min intervals at various temperatures or at a fixed
temperature (320°C) during various intervals leads increasing
quantities of high molecular weight material to yield low molecu-
lar weight products. Random scissions have been shown to break
down the polymer chains which then volatilize via depolymeriza-
tion. Activation energy for the decomposition of PpOMeS has been
found to be less than that for the decomposition of polystyrene
(P8). Variation of Tge (at g = 1°K/min) with 'Mnobeys the relation:
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Drive, Mississauga, Ontario, Canada L5L 1J9. )
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Tg("K) = 386 - 4.67x 10°/M . The value of 386°K for the Tg,

of PpOMeS is greater than the value (362° K) reported in the
literature. A comparison of Tg_for PS (379°K) for poly p-

methylstyrene (384°K) and for PpOMeS (386°K) reveals that the
presence of p-CHs or p-OCHs groups neither influences the
chain flexibility nor causes further steric hindrance than already
exists in PS.

INTRODUCTION

Thermal decomposition [ 1-9] and glass transition temperature
studies | 7-13] of polystyrene (PS) [ 1, 2, 10], poly(a-methylstyrene)
(PaMe8) | 3, 4, 11, 12], poly{p-isopropyl a-methylstyrene) (PpiPraMeS)
[5, 6, 13], poly(p-methylstyrene) (PpMeS) [ 7], poly(p-isopropylstyrene)
(PpiPrs) [’8], and poly(p-tert-butylstyrene) (PptBuS) [ 9] have been re-
ported on earlier. The results of the isothermal treatments showed
that while the substituents p-methyl and p-isopropyl in substituted
polystyrene are either involved or actually cause cross-linking of
polymer chains, the other substituents, viz., @-methyl and p-tert-
butyl, do not lead to such reactions. Furthermore, for identical
weight-loss values, a, the treatment temperatures for PaMeS were
the lowest; however, the other substituents led to relatively small
decreases in the decomposition temperatures. The activation energy
for the decomposition of polystyrene and its homologs followed the

order Epg > Epymes ~ Eppmes = Eppiprs ~ EpptBust 18

thought that this order corresponds to the radical yielding capacity
of these substituents,
A comparison of the Tg  values for PS (363°K), PaMeS (437°K),

PpMeS (364°K), PpiPrS (335°K), and PptBuS (399°K) samples having
an My, of 1.4 X 10 revealed that the chain flexibility and steric
hindrance are related to the effective bulk size (i.e., the packing
ability of the polymer) rather than to the apparent bulk size. This
conclusion was based on the fact that although the apparent bulk size
of various groups follows the order ~C(CHs)s > —CH(CHs)z > —CHs
> —H, the effective bulk size determined from the Tge data obtained

with polymers carrying these groups are a-CHs > p-t-C(CHa)s >
p-CHs > —H > p-i-CH(CHs):.

Keeping this in mind, a study of the thermal decomposition and the
glass transition temperature of another homolog of polystyrene,
namely, poly (p-methoxystyrene) (PpOMeS), was carried out and the
data obtained were compared with those of PS carrying other sub-
stituents as well as with those reported on the decomposition [ 14-16]
and Tg [17-19] of PpOMeS itself. The principal results obtained are

outlined in the present article.
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EXPERIMENTAL

PpOMeS from Aldrich Chemical Co. was used as received. The
weight average molecular weight Mw of the polymer was calculated

from the intrinsic viscosity data obtained with toluene at 30°C using
the relation reported in the literature [ 20]. Molecular weight dis-
tributions of PpOMeS samples were obtained with a Waters Associates
(Model 200) gel permeation chromatograph | 1-9] calibrated with
standard PS and PpOMeS samples.

A Perkin-Elmer (Model DSC-2) differential scanning calorimeter
operating with pure dry helium was used for the isothermal decompo-
sition of PpOMeS whereas a Perkin-Elmer (Model TGS-1) thermo-
gravimetric scanning balance operating in pure dry nitrogen was used
for the dynamic decomposition of PpOMeS. The Tg values of the

undecomposed and decomposed samples of PpOMeS were determined
with the DSC-2 apparatus [ 10-13] .

RESULTS AND DISCUSSION

Thermal Decomposition of PpOMeS$S

In Table 1 are summarized values of the weight loss ¢ (in %), the
molecular weights (MW and Mn), and the polymolecularity (MW/IT/I_n

ratios) obtained with PpOMeS both before and after its isothermal
treatment at various temperatures for different periods. Using the
50-min isothermal treatment data, a curve showing the variation of
a with temperature is given in Fig. 1, For comparison purposes,
data for 50 min isothermal treatments of PS [ 2] samples are also
plotted in this figure. For a values of less than 5%, the respective
decomposition temperatures of PS and PpOMeS are nearly the same.
For identical values of @ (>5%), however, the respective decomposi-
tion temperature of PpOMeS is 22°K lower than that of PS.

In Fig. 2 are shown the normalized GPC molecular weight distri-
bution curves of six PpOMeS samples subjected to 50 min isothermal
treatments at various temperatures. The maxima in the GPC dis-
tribution curves of the decomposed polymers move toward higher
elution counts, i.e., toward lower molecular weights. Furthermore,
as the treatment temperature is raised, an increase is noted in the
quantity of lower molecular weight polymer present between elution
counts 27 and 34. This behavior is similar to that observed in the
case of PS [ 2] where random scission and depolymerization reactions
operate.

In Fig. 3 is shown the variation of Mw with treatment temperature

for PpOMeS samples subjected to 50 min decomposition periods at

various temperatures. Mw decreases regularly with increasing tem-
perature.
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FIG. 1. Variation of weight loss a (%) with treatment temperature
T (°C) for PS (MW = 4,3 x 10° [ 2]) and PpOMeS (M =6.7x 10°)

samples. See Table 1 for other data.
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peratures. See Table 1 for other data.
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FIG. 3. Variation of molecular weight with treatment temperature
for PpOMeS samples subjected to 50 min decomposition periods. See
Table 1 for other data.

In Fig. 4 are shown, for different modes of operation, curves of
the variation in molecular weight as a function of &. In general, the
molecular weights decrease with increasing values of a, For identical
a values obtained with 50 min isothermal treatments at various tem-
peratures or at 320°C using different decomposition periods, the de-
crease in molecular weight is not the same.

Based on the data presented in Table 1 and on an analysis of Figs. 1
to 4, it may be said that the presence of an OCHs group in the aro-
matic rings of PS facilitates the formation of radicals which bring
about the random scission and the depolymerization of the polymer
chains.

To better understand the decomposition of PpOMeS,,the normalized
GPC distribution curve of the undecomposed polymer was compared
successively with like curves of other samples decomposed during 50
min periods at different temperatures. Subtracting from the initial
distribution curve of the undecomposed polymer the distribution of
any subsequently decomposed polymer, the changes, both positive and
negative, that take place as a result of the decomposition of the initial
higher molecular weight species can be visualized. For the PpOMeS
samples studied, these changes are shown in Figs. 5 and 6, where the
distributions over the negative sign (-) between elution counts 23 and
28) represent the volatilized fraction due to decomposition and those
over the positive sign (+) (between elution counts 25 and 31) represent
the newly formed products.

The characteristics of the various (-) and {+) GPC molecular weight
distributions shown in Figs. 5 and 6 are summarized in Table 2 which
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FIG. 4. Variation of molecular weight as a function of weight loss:
(o) a (%) for 50 min decomposition periods at different temperature
and (2 ) o (%) for different periods at 320°C.

includes 2, M M , and M /— values. For 50 min isothermal de-

comp051t1ons, as the temperature is raised from 25 to 355°C, increas-
ing quantities of high molecular weight material with M of (24 3to

9,5) x 10° and Mw/—n of 1.5 to 2.2 (located between elutmn counts 23

and 28 on the GPC curves) decompose to yield products (appearing on
the GPC curves between elution counts 25 and 31) having Mw values

of (54.0 to 7.0) X 10* and MW/Mn values varying from 1.8 to 3.5.

In Fig. 7 are shown the normalized GPC molecular weight distri-
butions of three PpOMeS samples subjected to thermal decomposition
at a fixed temperature (320° C) for different periods ranging from 10

to 180 min. Their o, Mw’ , and M /M values are listed in Table 1.
It may be noted that as o 1ncreases, M M o and M /_ decrease
regularly.

In Fig. 8 are shown changes that occur in the GPC molecular
weight distributions of seven PpOMeS samples subjected to thermal
decomposition at 320°C, where the decomposition time is varied from
zero to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 90, 90 to 120, and 120 to

180 min, respectwely The values of a, M, M_and M /— oy @85S0~

ciated with both the (-) and the (+) distributions shown in F1g. 8, are
summarized in Table 2. These data show that the isothermal treat-
ment of PpOMeS during the initial 10 min period results in the
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FIG. 5. Graphical method of analysis whereby the GPC molecular
weight distribution curves are broken down into various components:
The case of PpOMeS samples subjected to 50 min decomposition
periods in the temperature range of 250 and 320°C, See Table 2 for
other data.

decomposition of 19.2% of the polymer having an M of 18.8 X 10° and
an T\En of 11,0 x 10° (Mw/_lﬁn =1,7) and yielding a product (17.7%) with

an™M_of 17.9x 10* andan M_ of 9.3 X 10* (M_/M_ = 1.9). In the
w n w o n

intervals of 10 to 20, 20 to 30, 30 to 50, 50 to 90, 90 to 120, and 120
to 180 min, 7.8, 2.8, 14,2, 6.9, 14,1, and 7.0% of the polymer volatilize
yielding 6.9, 1.0, 9.9, 3.4, 10.0, and 1.5%, respectively, of lower
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FIG. 6. Graphical method of analysis whereby the GPC molecu-
lar weight distribution curves are broken down into various components:
The case of PpOMeS samples subjected to 50 min decomposition periods
in the temperature range of 330 and 355°C. See Table 2 for other data.

molecular weight products with an M of (18.5 to 2.8) X 10* and
M f_ ratios close to 2.0.

Based on these GPC molecular weight results derived from both
undecomposed and decomposed PpOMeS samples, one notes the fol-
lowing:

1. In the 50-min isothermal treatment of PpOMeS at various tem-
peratures or in decompositions carried out at 320°C during various
intervals, the mechanism of random scission breaks down the poly-
mer chains which then volatilize via depolymerization. The decom-
position behavior, in general, resembles that of PS[2]. Due to the
presence of the OMe group in the PS aromatic ring, the thermal
decomposition of PpOMeS is facilitated; however, the decreases in
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FIG. 7. Normalized GPC molecular weight distributions of PpOMeS
samples subjected to isothermal treatments at 320°C for different
periods. See Table 1 for other data.

the values of «, _Mw’ or F/Tn as a function of temperature or time are

not as regular as those for the thermal decomposition of PS [ 2].

2. The results of the present study do not agree with those re-
ported on by Inagaki et al, [ 16] , who suggested that PpOMeS is ther-
mally more stable than PS because of the electron-repelling OMe
group in the former polymer. The present results, however, agree
well with those of Still and Whitehead [ 14, 15] who suggested that PS
and PpOMeS degrade in a similar manner and the latter polymer has
a low activation energy (37 keal/mole) of decomposition.

In Fig. 9 are shown curves representing the dynamic thermogravi-
metric decomposition at a heating rate of 20°K/min of PS and PpOMeS
samples using the method of Coats and Redfern [ 21]. Activation
energies were calculated assuming successively orders of reaction
of zero and one. The values obtained are presented in Table 3. The
activation energy values for PS are found to be higher than those for
PpOMeS. For the zero-order reaction the value of 39.6 kcal/mole
as the activation energy of decomposition of PpOMeS is close to that
(37.4 kcal/mole) found by Still and Whitehead [ 15].
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FIG. 8. Graphical method of analysis whereby the GPC molecular
weight distribution curves are broken down into various components:
The case of PpOMeS samples subjected to isothermal treatments at
320°C for different periods. See Table 2 for other data.

Glass Transition of PpOMeS

The glass transition temperature (T ) of a polymer is heating-rate

dependent [ 7-13] as well as cooling-rate dependent [ 22, 23]. Although
recent work [ 7-9] on PpMeS, PpiPrS, and PptBuS has shown that in
the case of substituted polystyrenes the cooling rate has no effect on
Ty, it was thought pertinent to study the effects that the cooling rate
might have on the Tg of PpOMeS.
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FIG. 9. Dynamic thermogravimetric decomposition of PS and
PpOMeS samples at a heating rate of 20°K/min. See Table 3 for other
data.

In Fig. 10 are shown typical DSC thermograms obtained with the
undecomposed polymer and recorded in the glass transition range at
a fixed heating rate of 40°K/min. Various cooling rates were used
to bring the samples to a temperature approximately 30°K below
their expected Tg value prior to tracing the thermogram in the heat-

ing mode. The Tg values determined at the ACp/2 point [ 7-13] re-
mained constant as the cooling rate was increased. Tg values of the

undecomposed polymer subjected to three cooling rates are presented
in Table 4. Tg_ values {extrapolated to a heating rate of 1°K/min) are

likewise listed. These remain constant at 370.5 + 0,5°K. Subsequent
Tg measurements on the decomposed polymer samples were made

after they had been cooled below Tg at a rate of 320°K/min.
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TABLE 3. Activation Energy Values Calculated by the Method of
Coats and Redfern [ 21] for the Thermal Decomposition of Poly-

styrene (PS) and Substituted Polystyrenes

Activation energy

(kcal/mole)?
Sample M x10* M /M 5050 rlfo=r1
n W n
PS-A 78.0 1.1 - 111.0
PS-B 4.6 1.1 - 103.0
PS-C 1.8 1.1 51.4 88.5
PpOMeS 3.9 17.1 39.6 7.4

a_ . .
n is the order of reaction.
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FIG. 10. Typical DSC thermograms of an undecomposed polymer
sample of PpOMeS recorded in the glass transition region at a heat-
ing rate of 40°K/min following cooling at various rates, See Table 4

for other data.
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TABLE 4. Effect of Thermal History on Tg Determination of an
Undecomposed PpOMeS Sample

Sample
cooling T _at various heating rates (°K/min) T 2
rate g ge
(°K/min) 80 40 20 10 (1°K/min)
320 386.0 383.5 381.0 378.5 370.5

80 385.5 382.5 381.5 379.0 370.5

20 385.5 382.5 381.0 378.5 370.0

aExtrapolated value at a heating rate (q) of 1°K/min using equation
logg=a - b/Tg [10

In Fig. 11 are shown typical DSC thermograms of an undecomposed
PpOMeS polymer sample recorded in the glass transition region at
various heating rates. As expected, Tg was found to increase with

increasing heating rate. The T _ data obtained with a sample cooling

rate of 320°K/min and heating rates of 80, 40, 20, and 10°X/min for
the undecomposed and a number of decomposed PpOMeS samples are
summarized in Table 5. The values of Tg are found to increase with
increasing M

In Fig. 12 is shown a plot of T, as a function of Mn' T, increases
up to a point beyond which it remams constant, The critical value is
located at an M value of 3.0 X 10*, A plot of Tge as a function of

1/_n, shown in F:g. 13, yields a straight line best described by
[ - 5
Ty ("K) = 386 - 4.67 X 10°/M_ (1)

The value of 388°K for the Tgw

value 362°K reported in the literature [ 17-19].
In earlier work from this laboratory [ 10] the Ty, of PS (Eq. 2)
and PpMeS (Eq. 3) were related to Mn as follows:

of PpOMeS is greater than the

[ _ 5 /=

Tge( K) =379 - 2.1 X 10 /Mn (2)
o - 5

Tge( K) = 384 - 2,65 x 10 /1\_/1n (3)

The addition of methyl and methoxy substituents in the aromatic
rings increases the value of T, from 379°K for PS to 384°K for
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FIG. 11, Typical DSC thermograms of an undecomposed polymer
sample of PpOMeS recorded in the glass transition region at various
heating rates. See Table 4 for other data.

PpMesS and on to 386°K for PpOMeS. The values of the constant K,
which is related to the free volume of the polymer, are quite differ-
ent for PS (2.1 x 10°), PpMeS (2.65 x 10°), and PpOMeS (4.67 x 10°).
It would appear that the introduction of substituents, e.g., p-CHs
and p-OCH; groups in the aromatic ring of PS, does not influence
the chain flexibility or cause further steric hindrances to affect
much the Tg_ values of these substituted polymers.

The principal conclusions to be drawn from this study may be
summed up as follows:

1. In the isothermal decomposition of PpOMeS, random scissions
reduce the chain length of the polymer and depolymerization reac-
tions account for the weight loss, These conclusions find support
from the work of Still and Whitehead | 15].

2. The presence of the p-OCHs group in the aromatic ring lowers
its thermal stability, and a lower activation energy of decomposition
is required as compared to that for PS. These findings are in contra-
diction with the work of Inagaki et al. [ 16].
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FIG. 12. Extrapolated Tge values (to g = 1°K/min) of PpOMeS
as a function of —l\_lln. See Table 5 for other data,
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FIG. 13. Extrapolated Tge values (to ¢ = 1°K/min) of PpOMeS

as a function of 1 /Mn. See Table 5 for other data.
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3. T measurements made on the undecomposed and decomposed
PpOMeS samples yield Tgoo of 386°K which is different from the value
of 362°K reported in the literature [ 17-19]. A comparison of T,

for PS (379°K), PpMeS (384°K), and PpOMeS (386°K) reveals that the
presence of p~CHs and p-OCHs groups neither influences the chain
flexibility nor causes further steric hindrance in PS.

Further studies on the effect of other substituents on the thermal
decomposition of polystyrene as well as on Tg are in progress and
will be reported on in due course, ©
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